

GEOSYNTHETIC RESEARCH, INNOVATION & DEVELOPMENT

A Multidisciplinary Approach

Product Exhumations and Forensic Analysis

Internal and Industry Education

Product Design and Development

Technical Support Hub and Design Assistance Sustainability **Ethical Behaviour** Corporate Governance Corporate Social Responsibility Manufacturing VAVE Risk Assessment Product and Process

Innovation

Targeted Research and Product Characterisation

Test Method Development and Standardisation

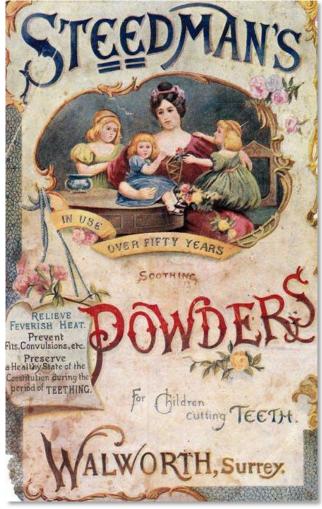
External Collaborations and Partnerships

How many chemicals?

According to a <u>study</u> published in 2020, over **350,000** chemicals and mixtures of chemicals have been registered for production and used globally

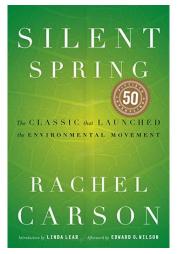
CHEMISTRY

GEOFABRICS

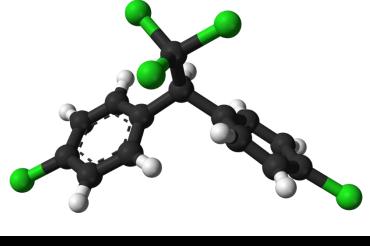

Smarter Infrastructure

A colourful history of chemical use

Dichlorodiphenyltrichloroethane

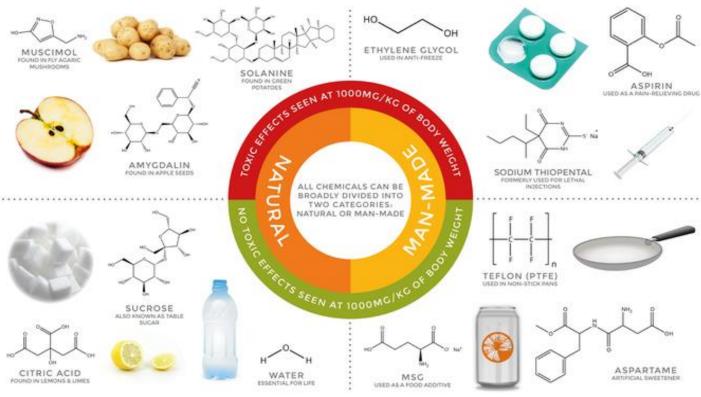

"We have discovered many preventives against tropical diseases, and often against the onslaught of insects of all kinds, from lice to mosquitoes and back again. The excellent DDT powder which had been fully experimented with and found to yield astonishing results will henceforth be used on a great scale by the British forces in Burma and by the American and Australian forces in the Pacific and India in all theatres." - Winston Churchill, September 24, 1944

Dichlorodiphenyltrichloroethane



Smarter Infrastructure

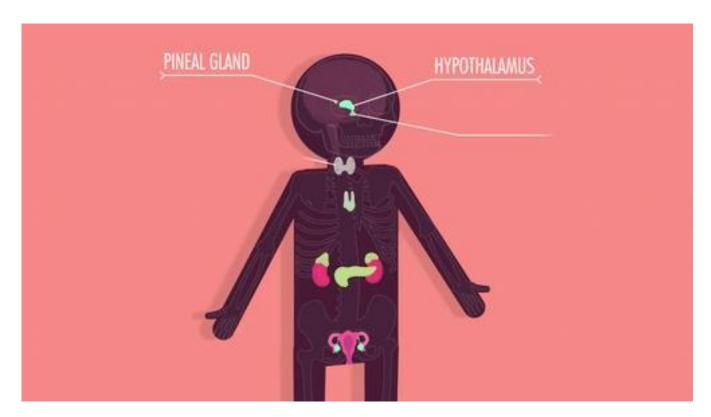
What determines whether a chemical is helpful...



Smarter Infrastructure

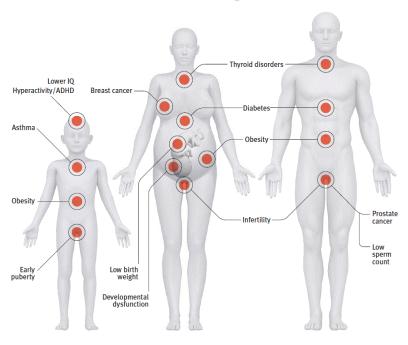
NATURAL & MAN-MADE CHEMICALS

A COMMON MISCONCEPTION IS THAT ALL MAN-MADE CHEMICALS ARE HARMFUL, AND ALL NATURAL CHEMICALS ARE GOOD FOR US. HOWEVER, MANY NATURAL CHEMICALS ARE JUST AS HARMFUL TO HUMAN HEALTH, IF NOT MORE SO, THAN MAN-MADE CHEMICALS.


CHEMICAL TOXICITY IS A SLIDING SCALE, NOT BLACK AND WHITE - AND WHETHER A CHEMICAL IS NATURALLY OCCURING OR MAN-MADE TELLS US NOTHING ABOUT ITS TOXICITY.

"EVERYTHING IS POISON, THERE IS POISON IN EVERYTHING. ONLY THE DOSE MAKES A THING NOT A POISON." ANY SUBSTANCE, IF GIVEN IN LARGE ENOUGH AMOUNTS, CAN CAUSE DEATH, SOME ARE LETHAL AFTER ONLY A FEW NANOGRAMS, WHILST OTHERS REQUIRE KILOGRAMS TO ACHIEVE A LETHAL DOSE. COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM MADE ON BEHALF OF SENSE ABOUT SCIENCE (@SENSEABOUTSCI) WWW.SENSEABOUTSCIENCE.ORG AMOSO DOCTOR PARESELSVS MISCONCEPTIONS ABOUT CHEMICALS ARE ADDRESSED FURTHER IN THE PUBLIC GUIDE. MAKING SENSE OF CHEMICAL STORES, WARLAND ETERS www.senseaboutscience.org/pages/making-sense-of-chemical-stories.html

Endocrine Disrupting Chemicals



The endocrine system is a complex collection of glands and organs that helps to regulate various bodily functions. This is accomplished through the production and release of hormones and steroids which act as chemical messengers.

Endocrine
Disrupting
Chemicals

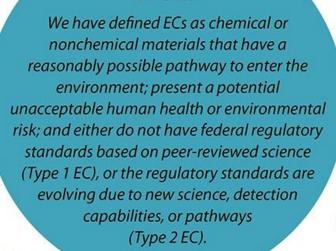
Low Doses Matter

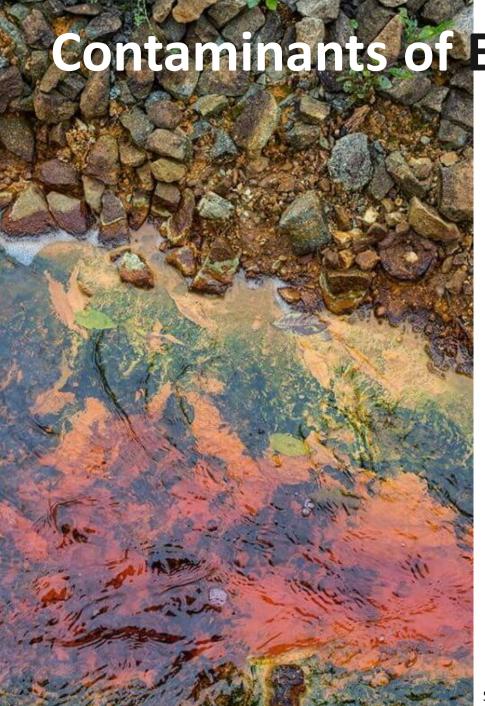
Everyday exposures to EDCs contribute to modern health epidemics.

How are people exposed?

Children's toys (phthalates)
Plastic drinking bottles (BPA, BPS, BPF)
Cleaning products (phthalates, triclosan)
House dust (flame retardants, pesticides)
Home furniture/electronics (flame retardants, PFAS)
Building materials (flame retardants, phthalates, PFAS)

Fragrances (phthalates)
Food (pesticides like chlorpyrifos)
Food packaging (BPA, PFAS, phthalates)
Thermal cash register receipts (BPA, BPS)
Drinking water (arsenic, lead, perchlorate)
Personal care products (parabens, phthalates, triclosan)





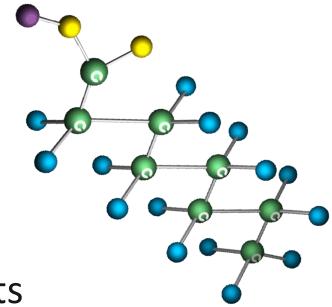
Smarter Infrastructure

Source: https://www.integral-corp.com/our-services/environment/emerging-contaminants/

Contaminants of Emerging Concern (CEC)

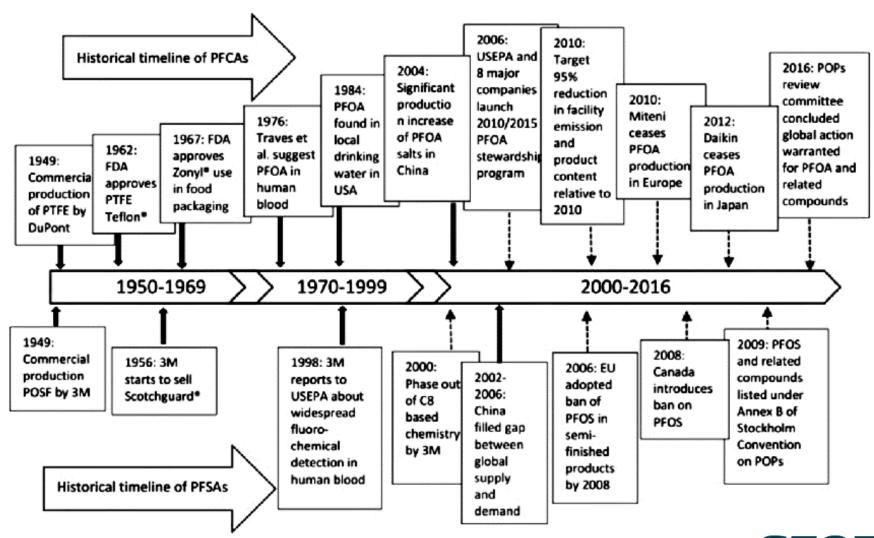
EC Category		Description and Examples
INDUSTRIAL	Industrial Chemicals	Plasticizers, surfactants, and solvents; examples include 1,4-dioxane, bisphenol-A, alkylphenols, and various phthalates
BIOLOGICAL	Microbes and Viruses	Biological contaminants; examples include cyanobacteria, microcystins, and Legionella pneumophila
FLAME RETARDANTS	Flame Retardants	Brominated flame retardants and poly- and perfluoroalkyl substances
METALS	Metals	Mostly Type 2 ECs such as arsenic, lead, and hexavalent chromium

EC Category		Description and Examples
PHARMACEUTICALS	Pharmaceuticals	Prescription and nonprescription over-the- counter drugs, synthetic hormones
PESTICIDES	Pesticides	Herbicides and insecticides and their metabolic and environmental degradation products; examples include 2,4- dichlorophenoxyacetic acid, atrazine, alpha- and beta-hexachlorocyclohexane, chlorpyrifos, glyphosate, and metolachlor
NANDMATERIALS	Nanomaterials	Chemicals or materials that range from approximately 1 to 100 nm in size and can be naturally occurring or engineered; examples include nanometal oxides, carbon nanotubes, and carbon buckyballs
PERSONAL CARE	Personal Care Products	Chemicals in soaps, cosmetics, sunscreens, fragrances, lotions, preservatives, microbeads, and microplastics



Contaminants of Emerging Concern (CEC)

Per- and Polyfluoroalkyl Substances (PFAS)


- Used in everyday products
- Persistent in the environment
- Ubiquitous in landfill leachates
- A large range of chemicals (<4,700)
- Bioaccumulates in the human body
- Biomagnifies through the food chain
- Some PFAS are readily absorbed by plants
- Exposure may result in adverse health effects

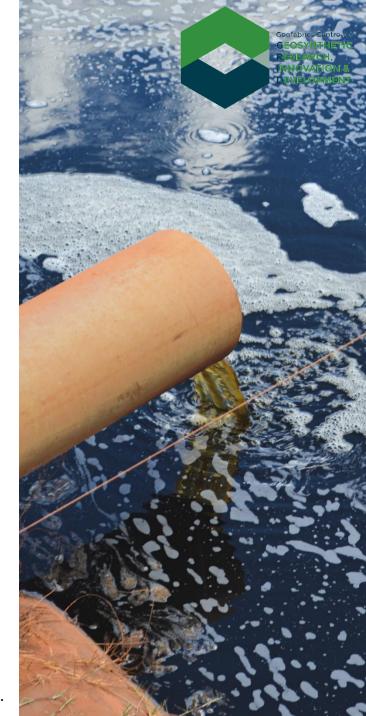
PFAS Timeline

Major Sources of PFAS in Waste

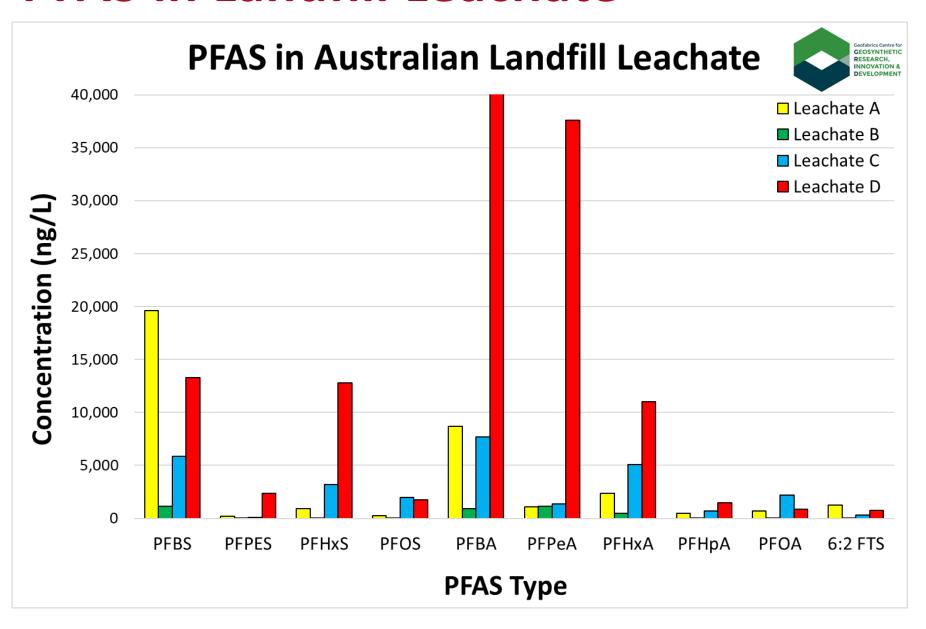
Waste stream	Industry Application	Selected examples	Waste stream quantity destined for Australian landfill (approx.) ¹	
	Cosmetics & personal care products	Cosmetics, shampoos		
	Food processing	PTFE liners (trays, ovens), food packaging		
Municipal solid waste	Household products	Non-stick coatings, surface treatments for textiles, upholstery, carpet and leather, floor polishes, cleaning agents, car waxes	13.8 MT	
	Biocides (herbicides & pesticides)	EtFOSA in ant/termite baits, PFPAs and PFPiAs as anti-foaming agents		
Construction & demolition	Building & construction	Waste concrete and brick (contamination from AFFFs) Sealants, PTFE, PVDF coatings, adhesives, surface treatments	20.4 MT	
Contaminated	Metal plating	Wetting agent, mist suppressant, surfactants		
wastes &	Mining	Surfactants in ore mining	1.8 MT	
wastewaters	Firefighting & safety	AFFFs		

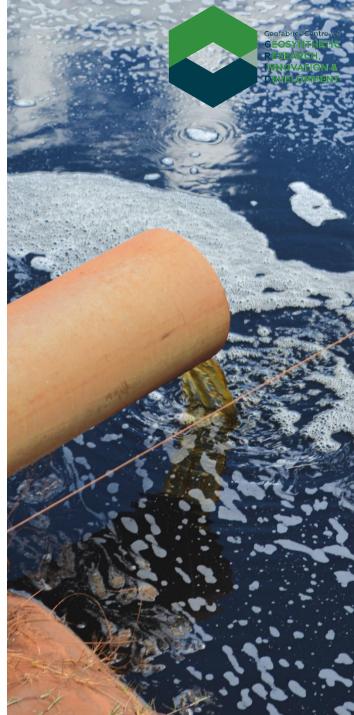
Source: Gates WP, MacLeod AJ, Fehervari A, Bouazza A, Gibbs D, Hackney R, Callahan DL, Watts M. Interactions of Per- and Polyfluoralkyl Substances (PFAS) with Landfill Liners. Adv Environ Eng Res 2020;1(4):40; doi:10.21926/aeer.2004007.

Major Sources of PFAS in Waste

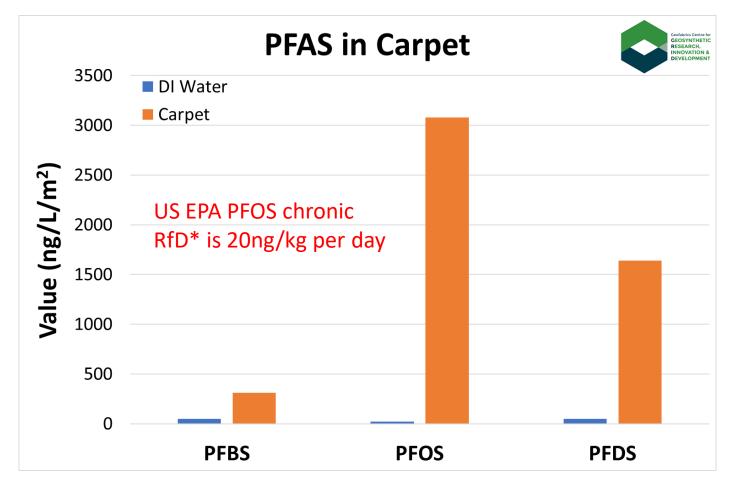

Waste stream	Industry Application	Selected examples	Waste stream quantity destined for Australian landfill (approx.) ¹
	Aviation & aerospace	PTFE and PFA tubing, gaskets, cables	
	Automotive	Wiring and cabling, seals, gaskets, lubricants	
	Electronics	PVDF and PTFE as insulators	
	Energy	FEP, PVDF films covering photovoltaic panels	
Commercial & industrial	Medical products	Biocompatible implants and surgical patches	20.4 MT
	Paper & packaging	Oil, grease and water repellent (including food packaging), LDPE bags	
	Textiles (upholstery, carpets), leather & apparel	PTFE in consumer products (outdoor equipment and clothing, housewares), oiland water-repellent coatings, PFOA-based chromium treatment for paper and leather.	
	Photo-lithography & semi- conductors	PFOS used in chip manufacture	
	Cable & wiring	PTFE, PVDF coatings and jackets	
	PFAS production	Processing aids	

Source: Gates WP, MacLeod AJ, Fehervari A, Bouazza A, Gibbs D, Hackney R, Callahan DL, Watts M. Interactions of Per- and Polyfluoralkyl Substances (PFAS) with Landfill Liners. Adv Environ Eng Res 2020;1(4):40; doi:10.21926/aeer.2004007.

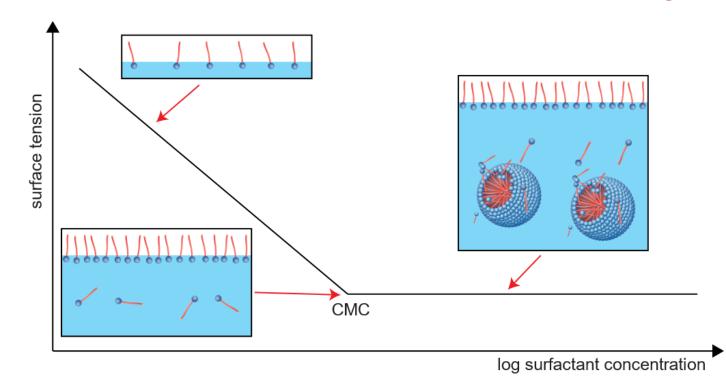

PFAS in Landfill Leachate


	Mean Concentration (ng/L)				
PFAS compound detected	Operating landfills (> 50% MSW) n = 12	Operating landfills (> 50% C&D) n = 7	Closed landfills (> 50% MSW) n = 7		
PFHxA	1300 (1700)	5000 (8100)	660 (300)		
PFHxS	940 (1000)	3700 (5100)	740 (490)		
PFOA	510 (410)	1400 (1200)	390 (170)		
PFHpA	360 (360)	760 (760)	220 (110)		
PFOS	300 (330)	1100 (910)	180 (250)		
PFNA	29 (24)	98 (110)	13 (6.8)		
PFDA	22 (36)	46 (83)	11 (14)		
PFUdA	3.0 (4.7)	4.6 (3.4)	2.2 (1.9)		
PFDoDa	1.8 (3.5)	1.1 (1.6)	2.7 (3.3)		

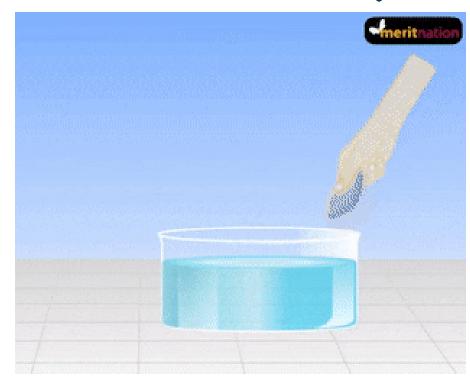
Source: Gates WP, MacLeod AJ, Fehervari A, Bouazza A, Gibbs D, Hackney R, Callahan DL, Watts M. Interactions of Perand Polyfluoralkyl Substances (PFAS) with Landfill Liners. Adv Environ Eng Res 2020;1(4):40; doi:10.21926/aeer.2004007.

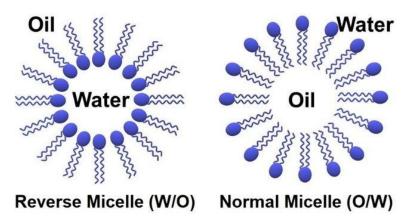

PFAS in Landfill Leachate

PFAS in Carpet



^{*} A chronic reference dose (RfD) is an estimate of the amount of a chemical a person can ingest daily over a lifetime that is unlikely to lead to adverse health effects.

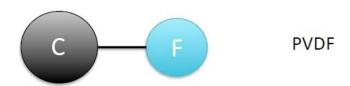

Concentration drives liner performance



When the PFAS reaches its Critical Micelle Concentration (CMC) it forms micelles with either the polar head group facing out in polar liquids such as water, or inverted micelles in non-polar liquids such as oil.

Source: https://www.dataphysics-instruments.com/us/knowledge/understanding-interfaces/surfactants-cmc/



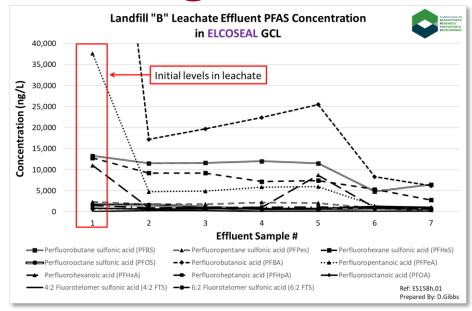

PFAS migration through Geomembranes

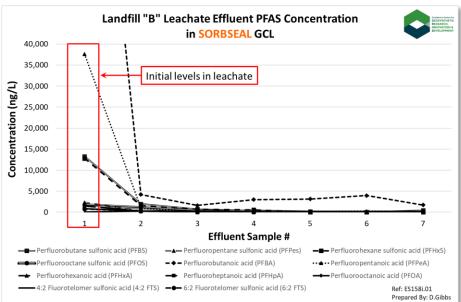
Thickness of the liner (thicker is better to reduce migration)

 Atomic radius of atoms in liner backbone (larger AR is better to reduce migration)

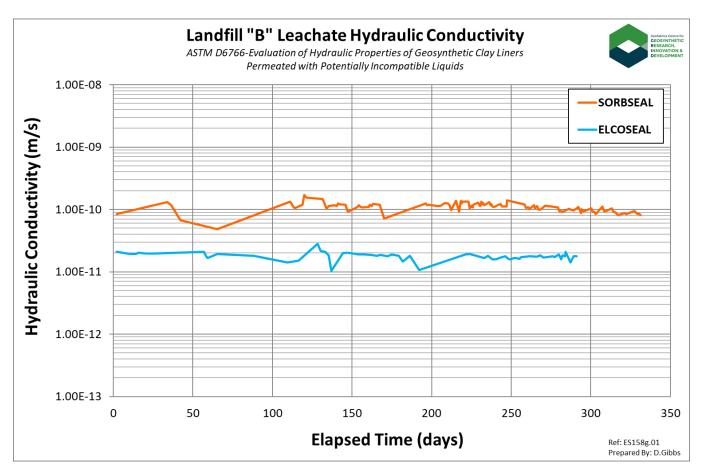
 Polarity of the polymer liner (high polarity is better to reduce migration)

• Size of PFAS molecules (shorter migrate faster)




Temperature (diffusion increases with temp.)

PFAS migration through GCLs



PFAS migration through GCLs

Removal Efficiency of Activated Carbon

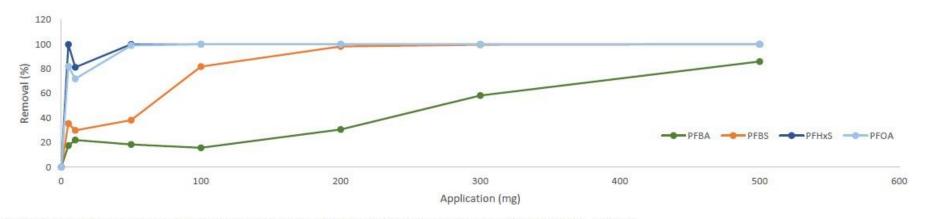
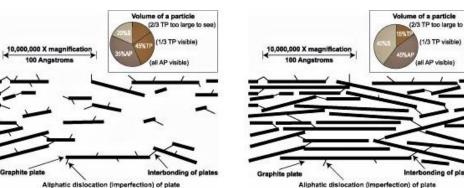
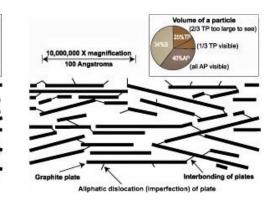




Figure 7 - Percent removal of target PFAS congeners from solution for PS-1300 ver sorbent application rate 0 - 500 mg

Source: Henry Nowicki, Wayne Schuliger, George Nowicki and Barbara Sherman. 2014. "Evaluation of Activated Carbon Performance". http://wcponline.com/2014/06/17/evaluation-activated-carbon-performance/

GEOFABRICS*

Smarter Infrastructure

International Regulation and Initiatives

ATSDR

Geofabrics Centre for

GEOSYNTHETIC RESEARCH, INNOVATION &

The Global Harmonization System of Classification and Labeling

EUROPEAN CHEMICALS AGENCY

US Regulation

- USEPA Safe Drinking Water Act (SDWA).
- Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) "Superfund"
- Toxic Substances Control Act (TSCA). (https://www.epa.gov/assessing-and-managing-chemicalsunder-tsca/risk-management-and-polyfluoroalkyl-substances-pfas).
- Toxics Release Inventory (TRI) Program. (https://www.epa.gov/toxics-release- inventory-tri-program/implementing-statutory-additioncertain-and-polyfluoroalkyl).
- Resource Conservation and Recovery Act (RCRA).

US PFAS Regulations

- EPA's drinking water Lifetime Health Advisory (LHA) limit (70ppt for PFOS and/or PFOA) are not enforceable standards
- Not yet identified as hazardous substances under CERCLA (1980)
- Investigations/risk managements actions driven by other forces
 - Action due to pressure from the public or regulatory agencies
 - Litigation
 - Clean Water Act (TMDL)
 - State-driven regulatory action

Australian PFAS Regulation

Medical Research Council

Per- And Polyfluoroalkyl Substances

Australian Government

Department of Defence

Australian Government

National Health and

Australian Government

Department of Health

National Industrial Chemicals Notification and Assessment Scheme

nicnas.gov.au

Australian PFAS Regulation

Table 7. Landfill acceptance criteria

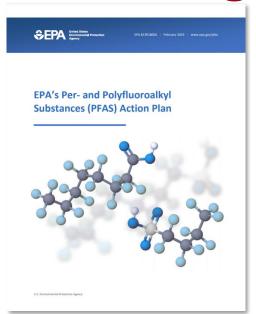
Landfill type		Interim landfill acceptance criteria 60, 61		Comments
		Sum of PFOS + PFHxS	PFOA	
Unlined	ASLP leachable concentration (µg/L)	0.07 μg/L	0.56 μg/L	Drinking water x 1 (Department of Health 2017)
	Total concentration (mg/kg)	20 mg/kg	50 mg/kg	Soil - Human health industrial/commercial x 1 Total concentration for PFOA of 50 mg/kg based on the low content limit
Clay/single composite lined	ASLP leachable concentration (µg/L)	0.7 μg/L	5.6 µg/L	Drinking water x 10 (Department of Health 2017)
	Total concentration (mg/kg)	50 mg/kg	50 mg/kg	Soil - Human health industrial/commercial x 10 Total concentration for PFOS + PFHxS and PFOA of 50 mg/kg based on the low content limit
Double composite lined	ASLP leachable concentration (µg/L)	7 μg/L	56 μg/L	Drinking water x 100 (Department of Health 2017)
	Total concentration (mg/kg)	50 mg/kg	50 mg/kg	Soil - Human health industrial/commercial x100

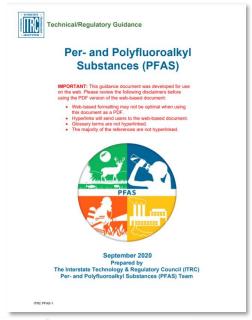
PFAS National Environmental Management Plan

Version 2.0 – January 2020

National Chemicals Working Group of the Heads of EPAs
Australia and New Zealand

Table 1. Human health guideline values developed by health regulators

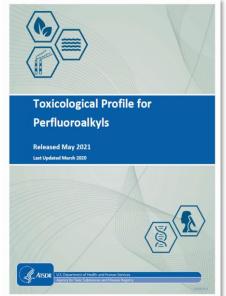

Sum of PFOS and PFHxS	PFOA	Description	Comments and source
0.02 μg/kg _{bw} /day	0.16 µg/kg bw/day	Tolerable daily intake (TDI)	FSANZ 2017
0.07 µg/L	0.56 µg/L	Drinking water quality guideline value	Australian Government Department of Health 2019
2 μg/L	10 μg/L	Recreational water quality guideline value*	NHMRC 2019


Notes: bw = body weight, µg = micrograms.

Where the guideline values refer to the sum of PFOS and PFHxS, this includes PFOS only, PFHxS only, and the sum of the two.

*NHMRC (2019) notes that people's use of recreational water is not the same, given Australia's climate and geography. Some recreational water resources may be used less frequently than the assumed guidelines (150 days/year), and (in rare cases) some may be used more frequently. In such cases more locally-appropriate event frequency based recreational guidelines can be considered in consultation with the state and regulatory health regulator.

Further Reading



Interim Guidance on the Destruction and Disposal of Perfluoroalkyl and Polyfluoroalkyl Substances and Materials Containing Perfluoroalkyl and Polyfluoroalkyl Substances

> INTERIM GUIDANCE FOR PUBLIC COMMENT DECEMBER 18, 2020

The contests of this document do not have the force and effect of law and are not meant to bind the public in any way. This document is intended only to provide charging to the public regardine existing requirements under the bar or agency policies. This guidance is not intended to, and does not, create any right or benefit, substantice of procedural, inforceable at law or in equily by any party against the United States, its departments, agencies, or entitles, its officers, employees, or agents, or any

Geofabrics Centre for

GEOSYNTHETIC RESEARCH, INNOVATION & DEVELOPMENT

Final thoughts

Smarter Infrastructure

- Our understanding of CEC's in landfill will continue to grow and with it, a likelihood of increasing regulation around containment.
- Given the large variety of PFAS chemicals, we may see guidance move towards a single maximum total value assigned to a nominated group of PFAS.
- If this occurs, and as we learn more about the performance of different geosynthetic lining materials, lining design may change depending on site-specific contaminant concentrations, and may include one or more higher performing materials than those used currently and/or more double composite liners.
- Monash University's "Fate and migration of PFAS through containment liner systems"
 currently underway to understand fate and transport and to assist designers and regulators
 with the next generation of lining system design.

